LPG - Side Channel Pump System

PC 3102/7 ... 6107/7 Suction lift operation out off under ground tanks

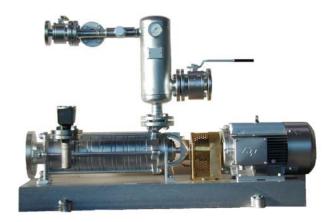
TECHNICAL DATA

:	max. 30 m³/h
:	max 18 bar m
:	max. 1800 rpm
:	standard mechanical seal
	closed coupled as option
:	PN 25
:	max. 200 m ³
:	max 4 m
:	-100% propene
	-mixtures propene/butane
	with min. 20% propane
:	-25 to 80°C
	(-40°C option)
:	DIN 2501 PN 25

APPLICATION

auto gas dispensers
cylinder filling
vaporizer feeding
burner feeding
carrousel filling
road tanker loading

Technical safety regulations and tue lack of space for safety distances require tue installation of underground tanks where extraction of LPG is only possible by top-off loading via tue dome flange.


The PC plant is a top-mounted pump system outside the tank which operates on suction lift operation with only a suction pipe inside the tank.

In this case no mechanical or electrical components are inside the pressurized tank (LPG storage) and there is easy access to the outside mounted pump for service and maintenance.

The minimum liquid level in the tank depends only on the safety distance between suction pipe and tank bottom which in this instance will only be a few centimetres. With this type of installation you obtain maximum utilization of the storage tank volume and considerably more than that with a submersible pump.

Subsequently the top mounted PC system offered the greatest benefits:

- Higher reliability
- Low operating costs
- Higher revenue
- Easy maintenance
- Short filling times
- Multi tank system possible

DESIGN

- CEH pump with retaining stage for level control in material GG25 or GGG40.3
- · dry-running protection and amplifier
- motor (explosion/flame-proof)
- pressure gauge
- discharge connection with ball valve
- bypass valve with return line and relief valve

• return line with orifice, check valve and ball valve CEH-pumps are horizontal, self-priming side channel pumps of handling gas along with the liquid, in segmental type construction with open vane wheel impellers. To obtain favourable NPSH values the CEH pump combines more side channel stages with a specially designed centrifugal suction stage impeller.

Operating principle

Priming

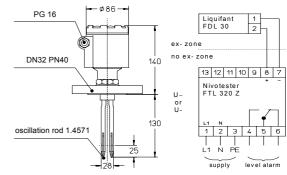
After star up the pump primes vapour out of the suction line. By the exhausting of vapour and re vaporization during the suction phase heat is drawn from the liquid in the suction pipe and lowers the temperature and pressure in the suction pipe.

The pressure difference generated against the constant tank pressure causes the liquid to rise up to the pump and pumping commences.

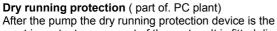
Operation

Now an energy-bearing partial flow is returned to the vapour phase of the tank and increases the temperature / pressure in the vapour phase above vapour pressure of the liquid and forces the liquid to climb up to the pump level.

This small continuous by-pass is fed from the pump to the vapour phase to maintain a higher vapour phase pressure at all times to ensure bubble-free LPG handling.


Sterling Fluid Systems France

Zone Industrielle de Trappes-Elancourt, 1-3 Avenue Georges Politzer, BoitePostale 41 , F-78193 Trappes Cedex, France Telefone : +33-(0)1348239 00 Fax : +33-(0)1348239 61 www.sterlingfluidsystems.fr


Components

The system consists of:

- Side channel combi pump CEH
- motor (explosion.-/flame-proof) EEx e II T3 or EEx de IIC T4
- base plate
- flexible/magnetic coupling
- gas separator
- bypass valve
- check valve
- relief valve
- pressure gauge
- 2 ball valves
- piping

Pump liquid level controller E&H Liquiphant

most the prime are any raining proceedent of the track of the term most important component of the system. It is fitted directly into the retaining stage of the pump to detect the liquid level inside the pump casing. It not only protects the pump against dry running but also keeps the pump in a primed condition. The dry running protection is explosion proof and designed to operate in hazardous areas. It's of major importance for the priming and the operating reliability of the system to follow the guidelines of this wiring scheme.

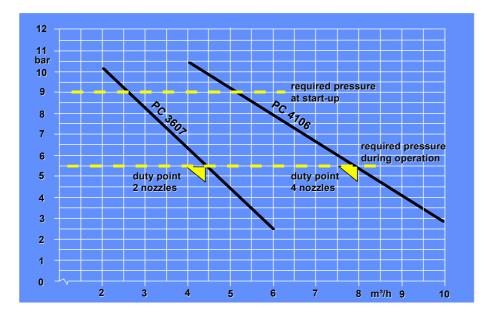
- If there is no liquid in the pump, it is impossible to start the pump If the pump has service liquid, it will start to prime, but will be switched off if the unit is not primed within 30 sec
- If during stand-still the liquid level in the pump drops below the centreline, the pump will be switched on automatically to prime the pump and then continues operation for 10 sec (option, switchboard)

Foot valve (option)

Special recommend for car filling stations where are short priming time requested. The membrane is a special material suitable for LPG, saved a low resistant and a high sealing function.

Switchboard: PC - installations for automatic (option)

Automatic operation is applied where longer periods of standstill of tue plant may cause the evaporation of the internal service liquid of the pump. By the automatic switching on when the level falls below the minimum and the automatic switching off when the maximum level is reached the plant remains self-acting operable. This automatic control is recommendable especially for refuelling installations.



Pump Selection for Car Filling Stations

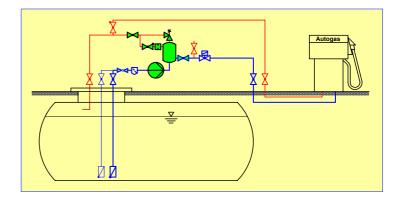
The criteria for selection of the right pump size are:

•	required differential pressure at start-up The pressure collapses immediately after filling has started but it is of major importance that tuepump is capable of generating this start-up differential pressure within its performance rang differential pressure of 9 bar covers the most unfavourable temperature conditions.	:	9,0 bar
٠	differential pressure during filling	:	5,5 bar
٠	dispenser filling flow rate	:	30 l/min per nozzle
•	only one minute for customer to tank 30 I for a dispenser with two nozzles is 60 I/min	:	3,6 m³/h.
٠	for a dispenser with four nozzles is 120 l/min	:	7,2 m³/h.

During filling operation the actual duty point of the PC unit PC 3607 and unit 4106 moves to a differential pressure of 5,5 bar and a dispenser filling flow rate of 4,4m³/h and 8,0 m³/h i.e. 36,6 l/min and 33,3 l/min per nozzle.

Other sizes please contact above company address

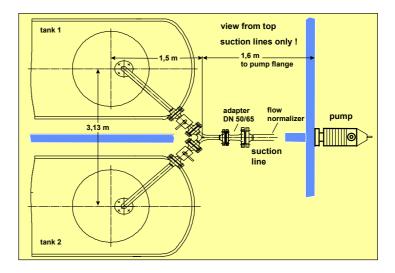
Installations


There are different installation requirements on site and the top-mounted PC unit has to comply with them.

a) Different tank diameters

The standards for LPG tanks vary in a lot of countries, therefore it must be possible to adapt the pumping system to the different tank diameters. Inside the pressurized tank the top mounted PC unit requires only a suction pipe which can easily be adapted to all tank diameters, if the suction lift does not exceed 4 m.

In case of a submersible pump changes of the barrel pump will be necessary and in case of a vertical tank pump even the pump length must be modified. With the topmounted PC system the pump unit always remains the same because the adapt ion to different tank diameters is limited to the suction line.



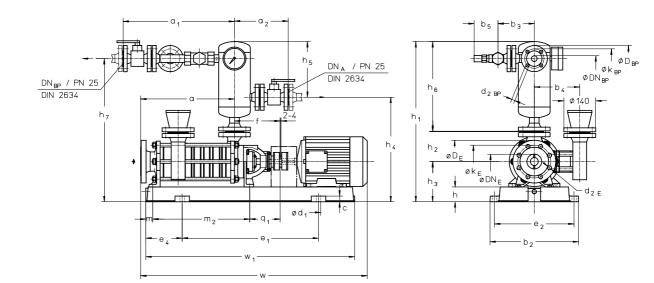
b) One pump for two tanks

Another advantage of the top-mounted PC unit is the fact that one pump only will be needed for two tanks in comparison to submersible pumps when each tank must be equipped with one pump. The second tank can be installed at a later time when increasing turnover of LPG requires a higher storage capacity.

Also in remote areas the installation of a second tank can be of bene-fit because the number of truck drives for refilling can be reduced and cut costs. The design of the suction pipe is of major importance for the performance and reliability of the system.

The first tank has to be installed parallel to the pump axis. The horizontal part of the suction line is connected to the main suction line with ay-piece. The initial installation costs are not higher than for a standard installation with one tank /one pump and an underground tank in line with the pump axis.

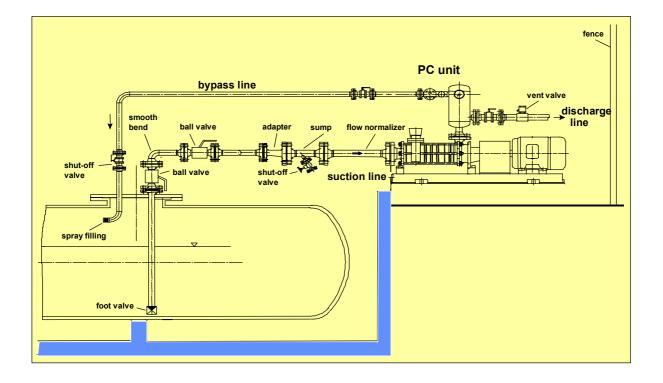
Should there be a future require-mend to double the storage capacity then it is very easy to install a second tank and add a second suction line and by-pass line to the existing system.


The advantage of installing a top-mounted PC unit is that it can be used with two tanks with very minor modifications.

The initial costs for a one tank installation are kept low. When extending the system to two tanks the existing installation remains un-touched. The only addition investment will be in a small amount of pipe work.

Huge savings over submersible equipment!

Attention for suction line


- A short suction line guarantee a short priming time
- Only ball valves should be used
- A sup instead a filter reduce the hydraulic resistance and evaporation of liquid
- After a order a detailed installation drawing is part of delivery

Dimension in mm

493 598	490 490	237	450	160	200	105	20	05	445	405	0.5	05	4.01				
598	490	057			200	105	30	25	115	185	65	25	185	5 24	i 1	4	14
	-50	257	490	160	210	105	30	40	150	200	80	25	185	5 24	1	4	18
d_{2E}	d ₁ d	1 1 e 1	e ₂	e ₄	f	h	h ₁	h ₂	h₃	h4	h₅	h ₆	h ₇	kε	kΑ	k BP	,
18	24 2	24 660) 400	180	201	80	741	123	212	496	245	395	666	145	85	85	
18	24 2	24 840) 440	205	195	110	863	140	242	539	324	479	789	160	110	85	
	18 18	18 24 2 18 24 2	18 24 24 660 18 24 24 840	18 24 24 660 400 18 24 24 840 440	18 24 24 660 400 180 18 24 24 840 440 205	18 24 24 660 400 180 201 18 24 24 840 440 205 195	18 24 24 660 400 180 201 80 18 24 24 840 440 205 195 110	18 24 24 660 400 180 201 80 741 18 24 24 840 440 205 195 110 863	18 24 24 660 400 180 201 80 741 123 18 24 24 840 440 205 195 110 863 140	18 24 24 660 400 180 201 80 741 123 212 18 24 24 840 440 205 195 110 863 140 242	18 24 24 660 400 180 201 80 741 123 212 496 18 24 24 840 440 205 195 110 863 140 242 539	18 24 24 660 400 180 201 80 741 123 212 496 245 18 24 24 840 440 205 195 110 863 140 242 539 324	18 24 24 660 400 180 201 80 741 123 212 496 245 395 18 24 24 840 440 205 195 110 863 140 242 539 324 479	18 24 24 660 400 180 201 80 741 123 212 496 245 395 666 18 24 24 840 440 205 195 110 863 140 242 539 324 479 789	18 24 24 660 400 180 201 80 741 123 212 496 245 395 666 145 18 24 24 840 440 205 195 110 863 140 242 539 324 479 789 160	18 24 24 660 400 180 201 80 741 123 212 496 245 395 666 145 85 18 24 24 840 440 205 195 110 863 140 242 539 324 479 789 160 110	18 24 24 660 400 180 201 80 741 123 212 496 245 395 666 145 85 85 18 24 24 840 440 205 195 110 863 140 242 539 324 479 789 160 110 85

	m	m_2	q ₁	w	W 1	weight
PC 3607	20	507	134	1020	1020	195 kg
PC 4106	80	590	140	1250	1200	240 kg

